End of Unit 1 Corrective Assignment – Limits and Continuity

Give the value of each statement. If the value does not exist, write "does not exist" or "undefined."

$$a. \lim_{x \to 3^{-}} f(x) =$$

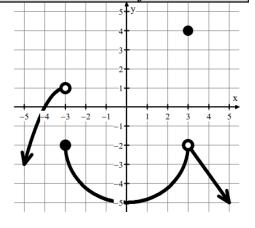
b.
$$f(-3) =$$

c.
$$\lim_{x \to -3^{-}} f(x) =$$
 d. $\lim_{x \to -3^{+}} f(x) =$

d.
$$\lim_{x \to -2^+} f(x) =$$

$$e. f(3) =$$

$$f. \lim_{x \to 3} f(x) =$$



Evaluate the limit.

2.
$$\lim_{x \to 1} \frac{\sqrt{x+15}-4}{x-1}$$

3.
$$\lim_{x \to -7^-} \frac{x}{x+7}$$

4.
$$\lim_{x \to \infty} \sin \left(\frac{\frac{\sqrt{2}}{2}x + \pi x^2}{4x^2 - x^3 + 2} \right)$$

5.
$$\lim_{x \to 3} \frac{x-1}{x^2 - 6x + 9}$$

6.
$$\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 9}$$

7.
$$\lim_{x \to 0} \frac{x}{\frac{1}{x+7} - \frac{1}{7}}$$

8.
$$\lim_{x \to \infty} \frac{5x^4 - 3x^3 - 1}{x^3 - 2x^4}$$

9.
$$\lim_{x \to 0} \frac{\sin^2(2x)}{2x^2}$$

10.
$$\lim_{x \to -7^{-}} \frac{|x+7|}{x+7}$$

11. If
$$f(x) = \begin{cases} \sin(2x), & x < \frac{\pi}{4} \\ \sin x, & \frac{\pi}{4} \le x \le \pi \\ \cos\left(\frac{x}{2}\right), & x > \pi \end{cases}$$

find the following:

a.
$$\lim_{x \to \frac{\pi^+}{4}} f(x) =$$

b.
$$\lim_{x \to \frac{\pi}{4}} f(x) =$$

$$c. \lim_{x \to \pi^{-}} f(x) =$$

$$d. \lim_{x \to \pi^+} f(x) =$$

e.
$$f\left(\frac{\pi}{4}\right) =$$

f.
$$f(\pi) =$$

g.
$$\lim_{x \to \frac{\pi}{4}} f(x) =$$

$$h. \lim_{x \to \pi} f(x) =$$

Identify any horizontal asymptote(s) of the following functions

12.
$$f(x) = 4^x$$

13.
$$f(x) = \frac{(x+4)(x+1)}{(2x-1)^2}$$

14.
$$f(x) = \frac{\sqrt{9x^4 + x^3 - 4}}{x^2 + 2x - 1}$$

15. Let g and h be the functions defined by $g(x) = -x^2 + 2x + 3$ and h(x) = 2x - 1. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for all x, what is $\lim_{x \to -2} f(x)$?

In a certain country, the number of deaths in a year can be modeled by d, where d(t) is the number of deaths and t is the year since 1975 for $0 \le t \le 30$.

- 16. What does d(25) represent?
- 17. What does $\frac{d(30)-d(20)}{30-20}$ represent?
- 18. What does $\frac{d(15)-d(14.999)}{15-14.999}$ represent?

For each function identify the type of each discontinuity and where it is located. $\int \ln(ex), \quad x < 1 \qquad 20. \quad f(x) = \frac{x}{x^2 - 4x} \qquad 21. \quad f(x) = \frac{x^2 + 9x + 14}{x + 7}$

19.
$$g(x) = \begin{cases} \ln(ex), & x < 1 \\ 2, & x = 1 \\ x - 1, & 1 < x \le 2 \\ x^2 - 3 & x > 2 \end{cases}$$
 20.
$$f(x) = \frac{x}{x^2 - 4x}$$

20.
$$f(x) = \frac{x}{x^2 - 4x}$$

21.
$$f(x) = \frac{x^2 + 9x + 1}{x + 7}$$

State whether the function is continuous at the given x values. Justify your answers!

22.
$$f(x) = \begin{cases} \frac{1}{x^2 + 5}, & x \le -2\\ 3^x, & -2 < x < 1\\ \cos(3\pi x), & x \ge 1 \end{cases}$$

a. Continuous at
$$x = -2$$
?

b. Continuous at
$$x = 1$$
?

Find the domain of each function.

23.
$$w(t) = \frac{t-7}{\sqrt{t+49}}$$

24.
$$f(x) = \ln(6x - 5)$$

25. If the function f is continuous for all real numbers and if $f(x) = \frac{x^2 - 2x - 63}{x - 9}$ when $x \ne 9$, then f(9) =

26. Let f be the function defined by $f(x) = \begin{cases} \frac{3\sin(5x)}{2x}, & x \neq 0 \\ a, & x = 0 \end{cases}$. For what value of a is f continuous at x = 0?

27. According to the table, what is value of $\lim_{x\to 2} f(x)$?

x	1.8	1.99	2.01	2.3
f(x)	-5.6	-5.501	-5.499	-5.3

Unit 2 CA - Differentiation: Definition & Fundamental Properties

Find the average rate of change of each function on the given interval. Use appropriate units if necessary.

1. $s(t) = \frac{1}{t-3}$; [0,1]

s represents miles

t represents seconds

Use the following table to find the average rate of change on the given interval.

t (item)	2	60	100	200	500
p(t) (dollars)	-7,000	-100	350	900	2,500

2. [60,500]

3.
$$2 \le t \le 100$$

Each limit represents the instantaneous rate of change of a function. Identify the original function, and the *x*-value of the instantaneous rate of change.

4.
$$\lim_{x \to 4} \frac{(x^2 - 3x) - (4)}{x - 4}$$

Function: f(x) =

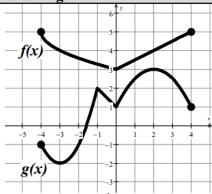
Instantaneous rate at x =

5.
$$\lim_{h \to 0} \frac{9(5+h)-10(5+h)^2+(205)}{h}$$

Function: f(x) =

Instantaneous rate at x =

Use the graphs of f and g to find the following.



- 6. h(x) = f(g(x)). Find the average rate of change on the interval [2,4].
- 7. j(x) = g(f(x)). Find the average rate of change on the interval [-3,2].

Use the table to find the value of the derivatives of each function.

x	h(x)	h'(x)	r(x)	r'(x)
-2	-3	2	-2	4

a.
$$f(x) = -h(x)r(x)$$

Find $f'(-2)$.

b.
$$g(x) = \frac{h(x) + r(x)}{r(x)}$$

Find $g'(-2)$.

c.
$$w(x) = (4 - 2h(x))(1 - r(x))$$

Find $w'(-2)$.

- 9. S(x) is the number of students in Mr. Kelly's class and x is the number of years since 2015.
 - a. Explain the meaning of S(3) = 127.
- b. Explain the meaning of S'(3) = 4.

Find the value of the derivative at the given point. Round or truncate to three decimal places. 10. $f(x) = \frac{x}{\sqrt{3x-5}}$ at x = 5. 11. $f(x) = \tan^2 x$ at x = -2.

10.
$$f(x) = \frac{x}{\sqrt{3x-5}}$$
 at $x = 5$.

11.
$$f(x) = \tan^2 x$$
 at $x = -2$

12. Use the tables to estimate the value of f'(45). Indicate units of measures.

t minutes	20	30	60	65	75
v(t) feet per minute	100	207	455	501	606

Find the derivative of each function

13.
$$s(t) = 7 \sin t - 3 \ln t - 5e^t$$

14.
$$f(x) = 7x^3 - 4x^2 + x - 3$$

$$15. \ \ f(x) = \frac{x^2}{\cos x}$$

$$16. \quad y = \sqrt{x} - \cot x$$

17.
$$d(t) = (4-t)\cos t$$

18.
$$g(x) = \frac{x^4 - 3x^2 + 6x}{x^2}$$

$$19. \quad g(x) = 4x^3 e^x$$

$$20. \ h(x) = 8\sqrt{x} - \frac{5}{x^4} + \pi^2$$

21.
$$g(x) = \frac{3}{4}x^{-1} - \frac{1}{2}\sqrt{x}$$

22. At what x-value(s) does the function $f(x) = \frac{x^4}{4} - 3x^3 + 9x^2 + 7 \text{ have a horizontal tangent?}$

24.
$$f(x) = 6\sqrt{x} + \frac{4}{x} - 1$$
 at $x = 4$

25.
$$f(x) = 2e^x + \cos x$$
 at $x = 0$

26. Is the function differentiable at
$$x = -1$$
? $f(x) = \begin{cases} 3x^4 + 9x - 6, & x < -1 \\ \frac{2}{x} - x - 11, & x \ge -1 \end{cases}$

27. What values of a and b would make the function differentiable at x = 2? $f(x) = \begin{cases} ax^3 + 2x + 1, & x < 2 \\ 2 - bx, & x \ge 2 \end{cases}$

$$f(x) = \begin{cases} ax^3 + 2x + 1, & x < 2\\ 2 - bx, & x \ge 2 \end{cases}$$

Unit 3 CA - Composite, Implicit, and Inverse Functions

Find $\frac{dy}{dx}$.

$$1. \quad y = \frac{e^{\tan 3x}}{3}$$

 $2. \quad y = \ln(\sin 5x)$

 $3. \quad y = x \ln(4x)$

4.
$$e^{y^2} = x^5 + 10$$

5. $y = \cos^{-1}(7x^3)$

 $6. \quad 2x^3 - xy = \ln(y)$

Find the equation of the tangent line at the given point.

7.
$$4x^3 = -5xy + 4y$$
 at $(1, -4)$

8. $y = \arccos(5x)$ at $x = -\frac{\sqrt{3}}{10}$

9. $h(x) = (2x - 1)^3(x + 2)$ at x = 1.

- 10. Find the equation of any horizontal tangent lines for the graph of $(y^3 + 1)^2 = x^2 + 4x + 4$.
- 11. Slope of the tangent line of $g(x) = 4 \sin^3 x$ at $x = \frac{\pi}{4}$.

12. Let f and g be differentiable functions where $g(x) = f^{-1}(x)$ for all x. f(6) = 8, f(8) = 2, f'(6) = -3, and f'(8) = 4. What is the value of g'(8)?

Find $\frac{d^2y}{dx^2}$ based on the given information.

13.
$$y = e^{x^4}$$

14.
$$5y^2 + 3 = x^2$$

Evaluate the 2nd derivative at the given point.
15. If
$$f(x) = x^3 + \frac{5}{x}$$
, find $f''(-1)$.

16. If
$$x^2 + y^2 = 13$$
, find $\frac{d^2y}{dx^2}$ at (2, 3).

The table below gives values of the differentiable functions g and h, as well as their derivatives, g' and h', at selected values of x.

x	g(x)	g'(x)	h (x)	h'(x)
-1	0	4	3	6
0	9	2	0	-4
3	-1	-2	9	4
9	3	1	16	9

17. If
$$f(x) = \frac{g(x)}{\sqrt{h(x)}}$$
, find $f'(3)$.

18. Find
$$\frac{d}{dx}h^{-1}(9)$$
.

19. Find the equation of the tangent line to
$$g^{-1}(x)$$
 at $x = 3$.